Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

نویسندگان

  • Hui Wei
  • Xiaowen Chen
  • Joseph Shekiro
  • Erik Kuhn
  • Wei Wang
  • Yun Ji
  • Evguenii Kozliak
  • Michael E. Himmel
  • Melvin P. Tucker
چکیده

High-temperature (150–170 ◦C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorily modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ◦C/30 min with 0.75 mM Fe2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 ◦C with 0.75 mM Fe2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C–O–C and C–H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production

Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...

متن کامل

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

Effects of Ultrasonic and High-Pressure Homogenization Pretreatment on the Enzymatic Hydrolysis and Antioxidant Activity of Yeast Protein Hydrolysate

Protein hydrolysate is highly regarded as a source of naturally occurring antioxidant peptides. The purpose of this study was to investigate the effect of Ultrasonic (Frequency, 20 KHz; Amplitude, 50%; Time, 30 min) and high-pressure homogenization (Power, 1500 bar; Rated flow, 10 dm/h) pretreatmenton the enzymatic hydrolysis and antioxidant properties of yeast protein hydrolysate obtained from...

متن کامل

Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk

In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...

متن کامل

Combined Severity during Pretreatment Chemical and Temperature on the Saccharification of Wheat Straw using Acids and Alkalis of Differing Strength

Acids and alkalis are considered important catalysts in biomass pretreatment, which is essential to overcome the recalcitrance of lignocellulose for sugar release. In this study, the effects of various chemicals and temperatures on the pretreatment and subsequent enzymatic hydrolysis of wheat straw were investigated. The conversions of glucan and xylan during pretreatment and enzymatic hydrolys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018